J.Membrane Biol.200, 105–113 (2004) DOI: 10.1007/s00232-004-0697-4

The Journal of Membrane Biology © Springer Science+Business Media, Inc. 2004

CO2 Sensitivity of Voltage Gating and Gating Polarity of Gap Junction Channels—Connexin40 and its COOH-Terminus-Truncated Mutant

C. Peracchia, J.T. Chen, L.L. Peracchia

Department of Pharmacology and Physiology, University of Rochester School of Medicine, 601 Elmwood Ave., Rochester, NY 14642-8711, USA

Received: 25 February 2004/Revised: 23 June 2004

Abstract. The $CO₂$ sensitivity of transjunctional voltage (V_i) gating was studied by dual voltage clamp in oocytes expressing mouse Cx40 or its COOH terminus (CT)-truncated mutant (Cx40-TR). V_i sensitivity, determined by a standard V_i protocol (20 mV) V_i steps, 120 mV maximal), decreased significantly with exposure to 30% $CO₂$. The Boltzmann values of control versus CO_2 -treated oocytes were: $V_0 = 36.3$ and 48.7 mV, $n = 5.4$ and 3.7, and G_i _{min} = 0.21 and 0.31, respectively. $CO₂$ also affected the kinetics of V_i -dependent inactivation of junctional current (I_i) ; the time constants of two-term exponential I_i decay, measured at $V_j = 60$ mV, increased significantly with $CO₂$ application. Similar results were obtained with Cx40-TR, suggesting that CT does not play a role in this phenomenon.The sensitivity of Cx40 channels to 100% CO₂ was also unaffected by CT truncation. There is evidence that $CO₂$ decreases the V_i sensitivity of Cx26, Cx50 and Cx37 as well, whereas it increases that of Cx45 and Cx32 channels. Since Cx40, Cx26, Cx50 and Cx37 gate at the positive side of V_i , whereas Cx45 and Cx32 gate at negative V_i , it is likely that V_i behavior with respect to CO_2 induced acidification varies depending on gating polarity, possibly involving the function of the postulated V_1 sensor (NH₂-terminus).

Key words: Cell communication — Connexins — Gap junctions — Voltage gating — Chemical gating — Channel gating — $CO₂$ — Xenopus oocytes

Introduction

Gap junctions are membrane domains endowed with channels that mediate the cell-to-cell diffusion of small cytosolic molecules. A gap junction channel is formed by the extracellular interaction of two hemichannels (connexons), which in turn are hexamers of connexins. Connexins (Cx) are a family of proteins whose structure comprises four transmembrane domains, two extracellular loops, a cytoplasmic loop (CL) , a short $NH₂$ -terminus (NT) and a COOH-terminus (CT) of variable length (reviewed in Peracchia, Lazrak & Peracchia, 1994).

Gap junction channels are gated by transjunctional voltage (V_i , Spray, Harris & Bennett, 1981a) and increased $[\text{Ca}^{2+}]$ _i (Loewenstein, 1966; Rose & Loewenstein, 1975) or $[H^+]$; (Turin & Warner, 1977; Spray, Harris & Bennett, 1981b), via molecular mechanisms still largely unclear (reviewed in Peracchia, Wang & Peracchia, 2000a; Harris, 2001; Peracchia, 2004).We have reported that changes in junctional conductance (G_i) induced by cytosolic acidification are more closely related to $[Ca^{2+}]$ _i than to $[H^+]$ _i (Peracchia, 1990ab; Lazrak & Peracchia, 1993), and there is evidence that in some cells channel gating is sensitive to nearly physiological $\left[Ca^{2+}\right]_i$, probably via calmodulin (CaM) activation (reviewed in Peracchia, 2004).

At least two V_i -sensitive gates have been identified: fast and slow. The fast V_i gate and chemical gate are believed to be distinct, as the former closes the channel rapidly $(< 1 \text{ ms})$ but incompletely, leaving a 20–30% residual conductance, whereas the latter closes the channel slowly (8–10 ms) but completely (Bukauskas & Peracchia, 1997). The slow V_i gate and the chemical gate are likely to be the same (Bukauskas & Peracchia, 1997, Peracchia, Wang & Peracchia, 1999, 2000b). Slow and fast V_i gates are in series and each hemichannel appears to have both gates. The

Correspondence to: C. Peracchia; email: camillo peracchia@ urmc.rochester.edu

slow gate closes at the negative side of V_i in all connexin channels, whereas the polarity of the fast V_i gating mechanism varies among connexin channels (reviewed in Harris, 2001).

Over the years, chemical and voltage gating of gap junction channels have been studied almost exclusively by testing chemical agents and voltage gradients, respectively, whereas little interest has been devoted to potential effects of voltage on chemical gating, or chemical agents on voltage gating. Over a decade ago, however, $CO₂$ has been shown to increase the V_i sensitivity of Cx32 channels (Werner et al., 1991). Conversely, in the late 1990's $CO₂$ -induced chemical gating was shown to be reversed by V_i gradients positive at the mutant side of heterotypic channels between Cx32 and various Cx32 mutants, suggesting that the chemical gate is V_i sensitive (Peracchia et al., 1999, 2000b). Similarly, chemical gating was reversed in insect cells by bilateral hyperpolarization (Weingart & Bukauskas, 1998). These observations indicate that careful examination of the effect of chemicals on V_i gates, and of V_i on the chemical gate, may provide important clues on gating mechanisms.

Recently, we have reported that the speed and sensitivity of V_i -dependent inactivation of junctional current (I_i) are increased by $CO₂$ in both Cx45 (Peracchia et al., 2003a) and Cx32 (Young & Peracchia, 2002; Peracchia et al., 2003b) channels. Interestingly, however, not all connexin channels are affected in the same way by $CO₂$ -induced acidification. In the present study, we report that channels made of mouse Cx40, or its COOH terminus-truncated mutant, decrease in sensitivity and speed of V_i gating with CO_2 application.A preliminary account of these findings has been published (Peracchia, Chen & Peracchia, 2004).

Materials and Methods

OOCYTE PREPARATION AND MICROINJECTION

Oocytes were prepared as previously described (Peracchia et al., 1996). Briefly, adult female *Xenopus laevis* frogs were anesthetized with 0.3% tricaine (MS-222) and the oocytes were surgically removed from the abdominal incision.The oocytes were placed in ND96 medium containing (in mm): NaCl 96, KCl 2, CaCl₂ 1.8, MgCl₂ 1, HEPES 5 (pH 7.6 with NaOH). Oocytes at stages V or VI were subsequently defolliculated in 2 mg/ml collagenase (Sigma Chemical, St.Louis, MO) for 80 minutes at room temperature in nominally Ca^{2+} -free OR2 solution containing (in mm): NaCl 82.5, KCl 2, $MgCl₂$ 1, HEPES 5 (pH 7.6 with NaOH). The defolliculated oocytes were injected with 46 nl $(0.25 \mu g/\mu l)$ of antisense oligonucleotide complementary to endogenous Xenopus Cx38: 5'- GCTTTAGTAATTCCCATCCTGCCATGTTTC-3' (commencing at nt -5 of Cx38 cDNA sequence; Barrio et al., 1991), by means of a Drummond nanoject apparatus (Drummond, Broomall, PA). The antisense oligonucleotide blocks completely the endogenous junctional communication within 48 hours.24–72

hours later 46 nl of mouse Cx40 wild-type cRNA (\sim 0.4 µg/µl), or cRNA of a mouse Cx40 mutant whose COOH terminus was truncated beyond residue 248 (Cx40-TR), were injected into oocytes at the vegetal pole and the oocytes were incubated overnight at 18°C. Cx40-TR was prepared by introducing a stop codon in the cDNA of Cx40 wild-type in the same location used by Stergiopoulos et al. (1999), employing the same primer used by this group (Cx40-TR sense: 5'-GAC AAG CAC TAG CTG CCT GGC-3[']). The oocytes were mechanically stripped of their vitelline layer in hypertonic medium (Peracchia et al., 1996) and paired at the vegetal poles in conical wells of culture dishes (Falcon Products, Becton Dickinson Labware, Franklin Lakes, NJ) filled withND96.All oocyte pairs were studied electrophysiologically 2–3 hours after pairing.

MEASUREMENT OF JUNCTIONAL CONDUCTANCE AND UNCOUPLING PROTOCOLS

The oocyte chamber was continuously perfused at a flow rate of 0.6 ml/min by a peristaltic pump (Dyamax Model RP-1, Rainin Instrument Co. Inc., Woburn, MA). The superfusion solution was ejected by a 22 gauge needle placed near the edge of the conical well containing the oocyte pair.The level of the solution in the chamber was maintained constant by continuous suction.All of the experiments were performed using the standard double-voltageclamp procedure for measuring G_i (Spray et al., 1981a). Following the insertion of a current and a voltage microelectrode in each oocyte, both oocytes were individually clamped by two oocyte clamp amplifiers (OC-725C, Warner Instrument Corp., Hamden, CT) to the same holding potential, $V_{m1} = V_{m2}$ (usually -20 mV), so that no junctional current would flow at rest $(I_i = 0)$. For measuring junctional conductance (G_i) and CO_2 sensitivity, a V_i gradient was created by imposing a voltage step (V_1) to oocyte # 1 while maintaining V_2 at V_m , thus, $V_j = V_1$. The negative feedback current (I_2) , injected by the clamp amplifier in oocyte # 2 for maintaining V_2 constant at V_m , was used for calculating G_j , as it is identical in magnitude to the junctional current (I_i) , but of opposite sign ($I_i = -I_2$); $G_i = I_i/V_i$. Pulse generation and data acquisition were performed by means of pCLAMP v. 8.2.0.232 software (Axon Instruments, Foster City, CA) and DigiData 1200 interface (Axon). I_i and V_i were measured with Clampfit (Axon) and the data were plotted with SigmaPlot (SPSS Inc., Chicago, IL).

For testing the effect of CO_2 on G_i two protocols were used. In CO_2 -Protocol # 1, electrical uncoupling was induced by 3 or 15 min supervisions (0.6 ml/min) of salines gassed with 100% CO₂ and G_i was measured by applying V_i gradients of $+20$ mV (2 s duration) every 30 s to one oocyte, while maintaining the other oocyte at V_{m} . In CO_2 -Protocol #2, electrical uncoupling was induced by 12– 60 min supervisions (0.6 ml/min) of salines gassed with 30% $CO₂$ and G_j was measured by applying V_j gradients of -40 mV (12 s duration) every 30 s to one oocyte, while maintaining the other oocyte at V_{m} . In the latter protocol, the time constants (τ) of G_i decay and the ratio G_i steady-state $(G_i \text{ss})$ over G_i peak $(G_i \text{ss}/G_i)$ $_{\text{peak}}$), in the presence and absence of CO_2 , were calculated by fitting each I_j curve to a two-term exponential function $(\tau_1$ and $\tau_2)$, following baseline correction (Clampfit, Axon). G_i ss was obtained from the exponential fit (parameter "C" of Clampfit, Axon).

For studying voltage dependence of G_i in the presence and absence of 30% $CO₂$ a standard V_i -Protocol was used. Each oocyte was first voltage clamped at -20 mV. Voltage steps of -20 mV (120 mV V_i maximum) and 25 s duration were applied every 45 s to either oocyte of the pair, while maintaining the other at -20 mV. The voltage-insensitive junctional conductance $(G_i$ _{max}) was calculated using I_i values elicited by $V_i = -20$ mV, since at this V_i there is no I_j decay. To illustrate the relationship between steady-state G_j (G_j) and V_j the ratio G_j ss/ G_j max was plotted with respect to V_j .

Cx40 (100% CO₂)

Fig. 1. Sensitivity of junctional conductance (G_i) to 100% CO₂ in Cx40 channels. Time course of the ratio G_{it}/G_{it0} (where G_{it} and G_{it0} are G_i at times t and t = 0, respectively). G_i sensitivity was determined by applying the CO_2 -Protocol #1. With 3 and 15 min exposures to 100% CO₂, G_i decreases to 39.9 \pm 8.1% and $13.9 \pm 2.5\%$ (mean \pm se, $n = 6$), respectively, at a maximum rate of \sim 16% min⁻¹. G_j recovers to near control values at a maximum rate of $\sim8\%$ min⁻¹ with either 3 or 15 min exposures to CO₂.

The curve was fitted to a two-state Boltzmann distribution of the form: $(G_j$ ss⁻ G_j min)/ $(G_j$ max⁻ G_j ss) = exp[- $A(V_j$ - $V₀)$, where $V₀$ is the V_j , value at which G_j is one half the value of G_j max- G_j min, G_j max is G_j at $V_j = 0$ mV and G_j min is the theoretical minimum normalized G_i . $A = \eta q/kT$ is a constant expressing voltage sensitivity in terms of number of equivalent gating charges, η , moving through the entire applied field, where q is the electron charge, k is the Boltzmann constant and T is the temperature in ${}^{\circ}$ K. The time constants $(\tau_1$ and τ_2) of G_i decay were calculated as described above.

Results

CX40 CHANNELS

G_i Sensitivity to 100% CO_2

The G_i sensitivity to CO_2 of channels made of Cx40 was measured by applying the $CO₂$ Protocol #1. With 3 and 15 min exposures to 100% CO_2 , G_i decreased to $39.9 \pm 8.1\%$ and $13.9 \pm 2.5\%$ (mean \pm se, $n = 6$; Fig. 1), respectively, at a maximum rate of $\sim 16\%/min$ (Fig. 1). G_i recovered to near control values at a maximum rate of $\sim8\%$ min⁻¹ with either 3 or 15 min exposures to $CO₂$ (Fig. 1).

Effect of $CO₂$ on V_i Sensitivity

In order to test the effect of CO_2 on V_j sensitivity, the standard V_i protocol was applied before and during exposure to 30% $CO₂$. The use of 30% rather than

Fig. 2. Effect of 30% $CO₂$, on Cx40 channels. To determine the time needed to reach steady state, oocytes were superfused for 12 min with salines gassed with 30% CO_2 and both G_j peak and G_j ss were measured by applying the CO_2 -Protocol #2. Steady state is reached in ≤ 10 minutes. At steady state, G_j peak has decreased from 2.3 \pm 1.3 µS to 1.3 \pm 0.5 µS (mean \pm se, n = 4), whereas G_i ss does not change significantly and increases progressively during recovery. As a result of these changes, G_j ss/ G_j peak increases to \sim 0.78 from initial values of \sim 0.47. During recovery, G_i ss/ G_i peak remains slightly higher (\sim 0.65) than before CO₂ exposure, probably because pH_i has not yet returned to control values.

 100% CO₂ enabled us to achieve steady-state conditions while maintaining sufficient coupling for accurately measuring G_i and V_i .

To determine the time needed to reach steadystate conditions, oocyte pairs were superfused for 12 minutes with salines gassed with 30% CO₂, and both G_i _{peak} and G_i _{ss} were measured applying the CO_2 protocol $#2$. Steady state was reached in <10 minutes (Fig. 2). At steady state, G_i _{peak} had reversibly decreased from 2.3 \pm 1.3 μ S to 1.3 \pm 0.5 μ S (mean \pm se, $n = 4$, Fig. 2*A*), whereas G_j _{ss} did not change significantly during $CO₂$ exposure, and increased progressively during the recovery period (Fig. 2). As a result of these changes, the ratio G_i ss/ G_i peak increased to ~ 0.78 from initial values of \sim 0.47 (Fig. 2). In the recovery period, the ratio G_i $_{\rm ss}/G_{\rm i}$ peak remained slightly higher (\sim 0.65) than before CO_2 exposure. A likely reason for it is that pH_i may not have yet returned to control values. Indeed, we have previously reported that pH_i recovers slowly following exposure to $CO₂$ (Wang & Peracchia, 1998).

For evaluating the effect of 30% CO_2 on V_i sensitivity, oocyte pairs were first tested for V_i -sensitivity by the standard V_j protocol in the absence of CO_2 (Fig. $4A$ and C, and Table 1). Then, they were superfused with 30% CO₂ and monitored by applying the CO_2 -Protocol #2 until steady-state conditions were attained (Fig. 3). During this period, G_j _{peak} dropped by \sim 50%, whereas G_i ss decreased minimally

Fig. 3. Effect of 30% $CO₂$ on V_i sensitivity or Cx40 channels. The oocytes were first tested for V_i sensitivity by the standard V_i protocol in the absence of $CO₂$ (Fig. 4A and C). Then, they were superfused with 30% $CO₂$ and monitored up to steady state (A and B) by applying CO_2 Protocol #2. During this period, G_i peak drops by \sim 50%, whereas G_{i ss} decreases minimally (A and B), the result being an increase in G_j ss/ G_j peak from 0.5 \pm 0.04 to 0.82 \pm 0.05

(Fig. 3A and B), the result being an increase in $G_{i, ss}$) G_i peak from 0.5 \pm 0.04 to 0.82 \pm 0.05 (mean \pm se, $n = 5$, Fig. 3B). The drop in G_i ss/ G_j peak is clearly demonstrated by the progressive change in junctional current $(I_i; Fig. 3A$ and inset) during CO_2 exposure.

After reaching steady state (Fig. 3), the $CO₂$ superfusion was continued for as long as 45–60 minutes, during which time the oocytes were retested with the standard V_j protocol (Fig. 4B and C). At steadystate conditions, in 30% $CO₂$, the channels displayed a significant decrease in V_i sensitivity (Fig. 4B and C) with respect to controls (absence of CO_2 ; Fig. 4A and C). In plots of the relationship between G_j ss/ G_j max and V_j (Fig. 4C), the Boltzmann values were: $V_0 = 36.3$ mV, $\eta = 5.4$ and G_j _{min} = 0.21, in the absence of $CO₂$ ($n = 11$), and $V₀ = 48.7$ mV, η = 3.7 and G_i min = 0.31, in the presence of CO₂ $(n = 9)$ (see Table 1). The Boltzmann values obtained in the absence of $CO₂$ are comparable to those previously reported for Cx40 channels expressed in oocytes (Hennemann et al., 1992; Ebihara, 1993; Bruzzone et al., 1993; Anumonwo et al. 2001), HeLa (Traub et al., 1994; Bukauskas et al., 1995), N2A 1(Beblo et al., 1995) or Jeg3 (Hellmann, Winterhager & Spray, 1996) cells.

The speed of V_j gating was also affected by exposure to 30% $CO₂$. The kinetics of I_i inactivation was best fit by a two-term exponential function $(\tau_1$ and τ_2). Both τ_1 and τ_2 increased with exposure to 30% CO₂. At $V_i = 60$ mV, τ_i increased from 1.92 ± 0.22 s to 5.99 \pm 0.51 s (mean \pm se, $n = 7$),

Cx40 (30% CO₂)

(mean \pm se, $n = 5$, B). The increase in G_j ss/ G_j peak is clearly demonstrated by the progressive change in junctional current $(I_i; A)$ and inset, normalized to peak current). Note that the time course of G_i peak corresponds closely to that of G_j ss/ G_j peak (B). After reaching steady state, the $CO₂$ superfusion was continued for 45–60 minutes, during which time the oocytes were retested with the standard V_i protocol (Fig. $4B$ and C).

Table 1. Boltzmann parameters of voltage gating in the presence and absence of $CO₂$

	V_0 (mV)	п	$G_{i \text{min}}$	n
Cx40	36.3	5.4	0.21	11
$Cx40-TR$	35.4	5.9	0.23	16
$Cx40$ (30% $CO2$)	48.7	3.7	0.31	9
$Cx40-TR(30\% CO_2)$	49.6	4.3	0.28	9

and τ_2 from 0.41 ± 0.04 s to 0.87 ± 0.2 s (mean \pm se, $n = 7$). V_i sensitivity and kinetics returned to control values after prolonged $CO₂$ washout *(data not shown)*.

COOH TERMINUS-TRUNCATED Cx40 CHANNELS (Cx40-TR)

G_i Sensitivity to 100% CO_2

The G_i sensitivity to CO_2 of channels made of Cx40-TR was very similar to that of Cx40 channels. With 3 and 15 min exposures to $CO₂$, G_i , measured by the CO_2 -Protocol #1, decreased to 43.1 \pm 3.8% and $18.6 \pm 6\%$ (mean \pm se, $n = 6$; Fig. 5), respectively, at a maximum rate of \sim 14% min⁻¹. G_j recovered to near control values at maximum rates of \sim 7.4% \min^{-1} and \sim 5.7% \min^{-1} , with 3 and 15 min exposures to $CO₂$, respectively (Fig. 5).

Effect of 30% $CO₂$ on V_j Sensitivity Monitored at Different V_i Values

Cx40-TR channels, tested by the standard V_i protocol displayed a V_i sensitivity virtually identical to that of Cx40 channels both in the absence and presence of 30% $CO₂$ (compare Figs. 4A–C and 6A– C). As seen with Cx40 channels, the V_i sensitivity of Cx40-TR channels decreased significantly with exposure to 30% $CO₂$ (Fig. 6B and C), as compared to control conditions (absence of CO_2 ; Fig. 6A and C). In plots of the relationship between G_j ss/ G_j max and V_i (Fig. 6C), the Boltzmann values were: $V_0 = 35.4$ mV, $\eta = 5.9$ and $G_{j \text{min}} = 0.23$ in the absence of $CO₂$ (n = 16), and $V₀$ = 49.6 mV, η = 4.3 and G_j _{min} = 0.28 in the presence of 30% CO_2 (n = 9) (see Table 1). The kinetics of I_i inactivation were also indistinguishable from those of Cx40 channels both in the presence and absence of 30% $CO₂$ (data not shown).

Discussion

This study reports the effects of $CO₂$ on chemical and V_i gating of channels made of Cx40 or its COOHterminus truncated mutant $(Cx40-TR)$. The data show that $CO₂$ decreases the V_i gating sensitivity of both Cx40 and Cx40-TR channels, and alters the kinetics of V_i gating. In addition, the data show that COOH-terminus (CT) truncation beyond residue 248 (82% CT deletion) does not significantly alter the $CO₂$ sensitivity of both chemical gating and V_i gating,

$Cx40-TR(100\% CO_2)$

Fig. 5. Effect of 100% $CO₂$ on G_i sensitivity of COOH terminustruncated Cx40 channels (Cx40-TR), tested by applying the $CO₂$ -Protocol #1. Time course of the ratio G_{it}/G_{jt0} (where G_{jt} and G_{jt0} are G_i at times t and $t = 0$, respectively). The G_i sensitivity to CO_2 of Cx40-TR channels is very similar to that of Cx40 channels.With 3 and 15 min exposures to CO_2 , G_i decreases to 43.1 \pm 3.8 % and 18.6 \pm 6% (mean \pm se, $n = 6$), respectively, at a maximum rate of $\sim 14\%$ min⁻¹. G_j recovers to near control values at maximum rates of \sim 7.4% min⁻¹ and \sim 5.7% min⁻¹ with 3 and 15 min exposures to $CO₂$, respectively. For comparison, the effect of 100% CO₂ on G_{it}/G_{i} to of Cx40 channels is also plotted (line plots).

indicating that most of Cx40's CT does not play a role in these phenomena.

The effect of $CO₂$ -induced cytosolic acidification on voltage gating is intriguing and complex.In experiments testing voltage sensitivity to V_j gradients of 40 mV, G_i _{peak} dropped by \sim 50% with 30% CO₂, while G_i ss changed minimally. Therefore, the increase in G_i ss/ G_i peak, which reflects a drop in V_i sensitivity, results mostly from the drop in G_j peak. Since the drop in G_i peak reflects the fraction of channels closed by $CO₂$, one could think that the drop in V_i sensitivity and the CO_2 -induced chemical gating might be mechanistically linked.Although this possibility cannot be discarded, we are more inclined to believe that the temporal correspondence between chemical gating and drop in V_i sensitivity might be simply a coincidence. Chemical uncoupling and V_i gating sensitivity to $CO₂$ are likely to be independent from each other because there are reasons to believe that the latter involves fast V_i gating, which is generally thought to be independent from the chemical gating mechanism.

Presently, at least three major gating mechanisms have been described: chemical gating and both fast and slow V_i gating. Fast and slow V_i gates are likely to be distinct, as the former closes the channel rapidly $($ 1 ms) but incompletely, leaving a 20–30% residual conductance, whereas the latter closes the channel slowly (8–10 ms) but completely (Bukauskas & Peracchia, 1997). In contrast, the slow V_i gate and the chemical gate are likely to be the same for a number of reasons: at the single-channel level they have the same opening and closing kinetics (Bukauskas & Peracchia, 1997); there is evidence that the chemical gate is sensitive to V_i (Peracchia, et al., 1999); and inhibition of calmodulin (CaM) expression virtually eliminates both chemical and slow V_i gating (Peracchia, et al., 2000b). In both Cx40 and Cx40-TR channels, the V_i dependent decay of I_i is best fit by a two-term exponential function, indicating the presence of both slow and fast gating components. Both of their time constants (τ_1 and τ_2) are CO₂ sensitive, as they increase significantly with $CO₂$. This indicates that $CO₂$ reduces the speed as well as the sensitivity of V_i gating.

With mild cytosolic acidification, histidine (H) residues are likely to be protonated, resulting in the addition of positive charges to the relevant domains of Cx40 and/or accessory proteins.The sequence of Cx40 wild-type preceding the CT truncation contains a total of ten H residues: H15 and H17 in NT, H74 in OL1, H95, H98 and H118 in CL, H183 and H192 in OL2, and H228 and H248 in CT; there are three more H residues in CT beyond the truncation (residues 249–358), but they can be disregarded because Cx40-TR channels behaved just like Cx40 channels in V_i - and chemical-gating sensitivity to $CO₂$. In CaM, there is only one histidine residue, H108.An in vitro study has reported an increase in molecular asymmetry and alpha-helix content of CaM with severe acidification, as well as a change to a more extended shape (Török et al., 1992). However, whether protonation of H residues and/or conformational changes in CaM are involved in the mechanism by which acidification affects V_i gating is unclear.

Interestingly, not all connexins are equally affected by CO_2 -induced acidification. Whereas CO_2 decreases the V_i sensitivity of Cx40 (this study), Cx26 (Peracchia et al., 2003b), Cx50 and Cx37 (Peracchia, unpublished) channels, it increases both V_i sensitivity and gating speed of Cx32 (Werner et al., 1991; Young & Peracchia, 2002; Peracchia et al., 2003b) and Cx45 (Peracchia et al., 2003a) channels.This suggests that there may be two distinct groups of connexins behaving in opposite ways in response to $CO₂$ acidification. The opposite behavior is likely to reflect the gating polarity of the connexin. The fast V_i gates are believed to close at the positive side of V_j (positive gaters) in some connexin channels and at the negative side (negative gaters) in others. $Cx26$, $Cx37$, $Cx38$, $Cx40$, $Cx46$ and Cx50 are believed to be positive gaters, whereas Cx30, Cx32, Cx43 and Cx45 are thought to be negative gaters (reviewed in Harris, 2001). Indeed, Cx32 and Cx45, whose V_i sensitivities increase with

Cx40-TR (control)

 $CO₂$, are negative gaters, whereas Cx40, Cx26, Cx50 and Cx37 whose sensitivity decreases, are positive gaters.Therefore, it is very likely that the type of $CO₂$ -induced V_i behavior varies among connexin channels, depending on V_i gating polarity.

The molecular basis of gating polarity is still only partly understood, but there is good evidence that charged residues at the initial segment of NT play a role (Verselis et al., 1994). A standing hypothesis envisions an NT domain as the voltage sensor, located within the channel's mouth (Verselis, Ginter &

Bargiello, 1994; Oh et al., 2000; Purnick et al., 2000a, b).Positive and negative gaters would have an acidic or a basic residue at the initial sequence of NT, respectively. With the establishment of a V_i gradient, the NT of positive gaters would move away from the channel's mouth (toward the cytoplasm) at the positive side of V_i , enabling channel gating by another connexin domain or an accessory molecule. Conversely, in negative gaters NT would move away from the channel's mouth at the negative side of V_i . Cx40, which is a positive gater (Hennemann et al., 1992),

 $Cx40-TR(30\% CO_2)$

would be so by virtue of an acidic residue in the third position (aspartate, D3), which is present in a similar location in other positive gaters (Cx26, Cx37, Cx38, $Cx46$ and $Cx50$, but absent in negative gaters $(Cx30,$ Cx32 and Cx45), except in Cx43.

Based on this idea and the likelihood that $CO₂$ induced acidification results in histidine protonation, how could we explain the drop in V_i sensitivity of Cx40 channels with acidification? A possibility is that the acidic residue of NT (D3) is located near an H residue.D3 and H residues would only interact electrostatically at low pH_i (positively charged histidine).The electrostatic D-H interaction would hinder the V_i -dependent displacement of NT from the channel's mouth, so that at low pH_i larger V_i gradients would be needed for NT displacement.The reverse would be true for negative gaters.Among the ten H residues of Cx40 mentioned above, potential players could be the well-conserved H17, H74, H95 and H98 residues.This hypothesis is presently being tested by point mutation.

Truncation of CT by 82% (beyond residue 248) had no effect on any parameter tested in this study. This seems to eliminate any potential role of much of CT in the effect of $CO₂$ on V_i gating sensitivity and speed.At the single-channel level, CT truncation has been shown to eliminate fast V_i gating (loss of residual conductance state) while leaving intact slow V_i gating in both Cx40 (Anumonwo et al., 2001) and Cx43 (Moreno et al., 2002) channels expressed in small cells. However, in agreement with our data, Anumonwo et al.(2001) have reported that Cx40-TR channels, expressed in oocytes, are indistinguishable from Cx40 wild-type channels in V_i gating sensitivity and kinetics, indicating that in this expression system both fast and slow gating components are preserved in Cx40-TR.CT truncation did not decrease the effectiveness of $CO₂$ on chemical gating either. In contrast, a previous study reported a drastic drop in $CO₂$ sensitivity of Cx40-TR channels (Stergiopulous et al., 1999). The reason for this discrepancy is unclear; perhaps it relates to different protocols used for acidifying the oocytes.

In conclusion, this study shows that cytosolic acidification induced by superfusion with solutions gassed with 30% $CO₂$ decreases the V_i gating sensitivity of channels made of mouse Cx40 or its COOHterminus (CT)-truncated mutant (Cx40-TR), and slows their V_i gating kinetics. In addition, the data show that CT truncation beyond residue 248 does not significantly alter the $CO₂$ sensitivity of chemical gating.Evidence from this and previous work indicates that there may be two distinct groups of connexins whose V_i sensitivities respond in opposite ways to cytosolic acidification.There are reasons to believe that this may be related to the difference in gating polarity between the two groups.If this were the case, the postulated voltage sensor domain (NT) might play a role in the mechanism by which $CO₂$ affects voltage-gating sensitivity and kinetics.

This study was supported by the National Institutes of Health, grant GM201 13.

References

- Anumonwo, J.M.B., Taffet, S.M., Gu, H., Chanson, M., Moreno, A.P., Delmar, M. 2001. The carboxyl terminal domain regulates the unitary conductance and voltage dependence of connexin40 gap junction channels. Circ. Res. 88:666-673
- Barrio, L.C., Suchyna, T., Bargiello, T., Xu, L.X., Roginski, R.S., Bennett, M.V.L., Nicholson, B.J. 1991. Gap junctions formed by connexins 26 and 32 alone and in combination are differently affected by applied voltage. Proc. Natl. Acad. Sci. USA 88: 8410–8414
- Beblo, D.A., Wang, H.-Z., Beyer, E.G., Westphale, E., Veenstra, R.D. 1995. Unique conductance, gating and selective permeability properties of gap junction channels formed by connexin40. Circ. Res. 77:813–822
- Bruzzone, R., Haeflinger, J.-A., Gimlich, R.L., Paul, D.L. 1993. Connexin40, a component of gap junctions in vascular endothelium, is restricted in his ability to interact with other connexins. Mol. Biol. Cell 4:7–20
- Bukauskas, F.F., Elfgang, C., Willecke, K., Weingart, R. 1995. Biophysical properties of gap junction channels formed by mouse connexin40 in induced pairs of transfected human HeLa cells. Biophys. J. 68:2289–2298
- Bukauskas, F.F., Peracchia, C. 1997. Two distinct gating mechanisms in gap junction channels: $CO₂$ -sensitive and voltagesensitive. Biophys. J. 72:2137–2142
- Ebihara, L.1993.Expression of dog connexin 40 in paired Xenopus oocytes. Proc. Int. Meeting on Gap Junctions. Hiroshima (Japan). p 20
- Harris, A.L. 2001. Emerging issues of connexin channels: Biophysics fills the gap. Quart. Rev. Biophys. 34:325–472
- Hellmann, P., Winterhager, E., Spray, D.C. 1996. Properties of connexin40 gap junction channels endogenously expressed and exogenously overexpressed in human choriocarcinoma cell lines. Pfluegers Arch. 432:501–509
- Hennemann, H., Suchyna, T., Lichtenberg-Fraté, H., Jungbluth, S., Dahl, E., Schwarz, J., Nicholson, B.J., Willecke, K. 1992. Molecular cloning and functional expression of mouse connexin40, a second gap junction gene preferentially expressed in lung. J. Cell Biol 117:1299–1310
- Lazrak, A., Peracchia, C. 1993. Gap junction gating sensitivity to physiological internal calcium regardless of pH in Novikoff hepatoma cells. Biophys. J. 65:2002–2012
- Loewenstein, W.R. 1966. Permeability of membrane junctions. Ann. N.Y. Acad. Sci. 137:441–472
- Moreno, A.P., Chanson, M., Anumonwo, J., Scerri, I., Gu, H., Taffet, S.M., Delmar, M. 2002. Role of the carboxyl terminal of connexin43 in transjunctional fast voltage gating. Circ. Res. 90:450–457, 2002
- Oh, S., Abrams, C.K., Verselis, V.K., Bargiello, T.A. 2000. Stoichiometry of transjunctional voltage-gating polarity reversal by a negative charge substitution in the amino terminus of a connexin32 chimera. J. Gen. Physiol. 116:13–31
- Peracchia, C. 1990a. Increase in gap junction resistance with acidification in crayfish septate axons is closely related to changes in intracellular calcium but not hydrogen ion concentration. J. Membrane Biol. 113:75–92
- Peracchia, C. 1990b. Effects of caffeine and ryanodine on low pH_iinduced changes in gap junction conductance and calcium

concentration in crayfish septate axons. J. Membrane Biol. 117:79–89

- Peracchia, C.. 2004. Chemical gating of gap junction channels. Roles of calcium, pH and calmodulin. In: The Connexins. Hervé, J.C., (editor) Biochim. Biophys Acta (Biomembranes). 1662:61–80
- Peracchia, C., Chen, J.T., Peracchia, L.L. 2004. CO₂ reduces the sensitivity of Cx40 channels to transjunctional voltage. Biophys. J. 86:583a
- Peracchia, C., Lazrak, A., Peracchia, L.L.. 1994. Molecular models of channel interaction and gating in gap junctions.In: Peracchia, C., (editor) Handbook of Membrane Channels—Molecular and Cellular Physiology.pp 361–377, Academic Press, San Diego
- Peracchia, C., Wang, X., Li, L., Peracchia, L.L. 1996. Inhibition of calmodulin expression prevents low-pH-induced gap junction uncoupling in Xenopus oocytes. Pfluegers Arch. 431:379–387
- Peracchia, C., Wang, X.G., Peracchia, L.L. 1999. Is the chemical gate of connexins voltage sensitive? Behavior of Cx32 wild-type and mutant channels. Am. J. Physiol. 276:C1361–C1373
- Peracchia, C., Wang, X.G., Peracchia, L.L.. 2000a. Behavior of chemical- and slow voltage-sensitive gating of connexin channels: the ''cork'' gating hypothesis. In: Peracchia, C., (editor) Gap Junctions—Molecular Basis of Cell Communication in Health and Disease.pp 271–295, Academic Press, San Diego, CA
- Peracchia, C., Wang, X.G., Peracchia, L.L. 2000b. Slow gating of gap junction channels and calmodulin. J. Membrane Biol 78: 55–70
- Peracchia, C., Young, K.C., Wang, X.G., Peracchia, L.L. 2003a. Is the voltage gate of connexins CO_2 -sensitive? Cx45 channels and inhibition of calmodulin expression. *J. Membrane Biol.* 195:53-62
- Peracchia, C., Young, K.C., Wang, X.G., Chen, J.T., Peracchia, L.L. 2003b. The voltage gates of connexin channels are sensitive to CO₂. Cell Comm. Adhes. **10:**233-237
- Purnick, P.E.M., Benjamin, D.C., Verselis, V.K., Bargiello, T.A., Dowd, T.L. 2000a. Structure of the amino terminus of a gap junction protein. Arch. Biochem. Biophys. 381:181–190
- Purnick, P.E.M., Oh, S.H., Abrams, C.K., Verselis, V.K., Bargiello, T.A. 2000b. Reversal of the gating polarity of gap junctions by negative charge substitutions in the N-terminus of connexin 32. Biophys. J. 79:2403–2415
- Rose, B., Loewenstein, W.R. 1975. Permeability of cell junction depends on local cytoplasmic calcium activity. Nature 254:250– 252
- Spray, D.C., Harris, A.L., Bennett, M.V.L. 1981a. Equilibrium properties of a voltage-dependent junctional conductance. J. Gen. Physiol. 77:77–93
- Spray, D.C., Harris, A.L., Bennett, M.V. 1981b. Gap junctional conductance is a simple and sensitive function of intracellular pH. Science 211:712–715
- Stergiopoulos, K., Alvarado, J.L., Mastroianni, M., Ek-Vitorin Taffet, J.F. S.M., Delmar, M. 1999. Hetero-domain interactions as a mechanism for the regulation of connexin channels. Circ. Res. 84:1144–1155
- Török, K, Lane, A.N., Martin, S.R., Janot, J.M., Bayley, P.M. 1992.Effects of calcium binding on the internal dynamic properties of bovine brain calmodulin, studied by NMR and optical spectroscopy. Biochemistry 31:3452–3462
- Traub, O., Eckert, R., Lichtenberg-Fraté, H., Elfgang, C., Bastide, B., Scheidtmann, K.H., Hulser, D.F., Willecke, K. 1994. Immunochemical and electrophysiological characterization of murine connexin40 and -43 in mouse tissues and transfected human cells. Eur. J. Cell Biol 64:101–112
- Turin, L., Warner, A.E. 1977. Carbon dioxide reversibly abolishes ionic communication between cells of early amphibian embryo. Nature 270:56–57
- Verselis, V.K., Ginter, C.S., Bargiello, T.A. 1994. Opposite voltage gating polarities of two closely related connexins. Nature 368:348–351
- Wang, X.G., Peracchia, C.. 1998. Domains of connexin32 relevant to CO2-induced channel gating. In: Werner, R., (editor) Gap Junctions. pp 35–39, IOS Press, Amsterdam, The Netherlands
- Weingart, R., Bukauskas, F.F. 1998. Long-chain-alkanols and arachidonic acid interfere with the V_m -sensitive gating mechanism of gap junction channels. Pfluegers Arch. 435:310–319
- Werner, R., Levine, E., Rabadan-Diehl, C., Dahl, G. 1991. Gating properties of connexin32 cell-cell channels and their mutants expressed in Xenopus oocytes. Proc. R. Soc. Land. 243:5–11
- Young, K.C., Peracchia, C. 2002. Carbon dioxide sensitive voltage gating of connexin32 and connexin32/45 chimeric channels. Mol. Biol. Cell 13:35la